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Abstract
The majority game, modelling a system of heterogeneous agents trying to
behave in a similar way, is introduced and studied using methods of statistical
mechanics. The stationary states of the game are given by the (local) minima
of a particular Hopfield-like Hamiltonian. On the basis of replica symmetric
calculations, we draw the phase diagram, which contains the analogue of
a retrieval phase. The number of metastable states is estimated using the
annealed approximation. The results are confronted with extensive numerical
simulations.

PACS number: 05.20.−y

1. Introduction

The cooperative processes taking place in complex systems of agents interacting with each
other, which were up to quite recently studied mainly by human sciences, have also become
an interesting object of research for physicists. Despite the tremendous complexity of such
systems and the presence of unpredictable ingredients related to human free will, some of
the statistical regularities which characterize their collective behaviour can be studied using
models and techniques developed in the field of statistical physics.

As usual in such situations one builds very abstract theoretical models which have a
much wider applicability. The so-called minority game, for example, was proposed as a
formalization of the El-Farol bar problem [1], in order to capture the essential features of
traders’ interaction in a stock exchange market [2]. But the same model can describe a
more general situation where many agents compete for the exploitation of a number of scarce
resources [3].

This seemingly simple model turns out to exhibit a surprisingly rich variety of complex
behaviour which was studied thoroughly using various methods [4–6]. The statistical
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mechanics approach to this sort of models is particularly interesting as it reveals aspects
of cooperative phenomena which may be qualitatively different from those studied in physics.

The minority game is based on the assumption that agents prefer to avoid crowds. Hence
they tend to use those strategies which let them be as often as possible in the minority. This
is only one of the many possible types of interactions. It seems natural to ask what happens
under the reversed (majority) rule, favouring those strategies which allow the agents to stay
on the side of the majority.

In the economic interpretation of this sort of model, it has been shown [7] that the minority
rule describes so-called ‘fundamental’ or ‘contrarian’ traders in a financial market. These are
agents who believe that market prices are close to an equilibrium and hence expect that price
fluctuations tend to generate price changes towards the equilibrium value. The majority rule
is instead appropriate for trend followers, whose behaviour is thought to be responsible for the
so-called ‘bubbles’—buy rushes leading to price increases well beyond those which would be
justified by an economic evaluation. The majority mechanism is self-reinforcing as it generates
self-fulfilling prophecies: if the agents expect that the price will rise (fall), the majority of
them will buy (sell) which will actually make the price rise (fall).

Before focusing on the majority game, let us mention that the competition between
majority and minority players has been studied in [7] in the simplest setting and in [8] in its
full complexity.

From a wider perspective, the majority game describes a situation where the profit of
agents increases with the number of agents acting in the same way. Conformity effects of this
type are evident in the spreading of fashions. A further example may be that of a shop which
lowers the prices as the number of customers increases, or of a product which becomes cheaper
the more popular it is. This mechanism, which goes under the name of increasing returns
in economics, lies at the heart of quite interesting aggregation phenomena—for example, the
emergence of cities and economic districts such as Silicon Valley and Hollywood [9].

As we shall see the study of the majority game leads to the analysis of models which
are very similar to attractor neural networks, in particular to the Hopfield model [10]. In
brief, agents’ learning dynamics is different from Glauber dynamics, but the energy landscape
where it takes place is the same. It turns out that aggregation in the majority game is the
same phenomenon as memory retrieval in the Hopfield model. Hence the physics of neural
networks tells us a lot about the behaviour of the majority game. On the other hand, this study
also provides new results on the physics of neural networks by probing energy landscapes
such as that of the Hopfield model with a different type of dynamics.

Our work is based on a statistical mechanics approach to the stationary states of the
majority game and its results are verified by numerical simulations. The paper is organized as
follows: In the next section, we introduce the model and in section 3 we discuss its stationary
states—we show that they can be identified with the local minima of the Hopfield-type
Hamiltonian. Section 4 deals with the calculation of free energy and the construction of the
phase diagram. Given that stationary states are selected in a dynamical way and not according
to a Boltzmann weight, we compare our results with extensive numerical simulations. In
order to clarify the dynamical behaviour of the model, we discuss the number of stationary
states in section 5. We conclude with a summary of the main results and a discussion of their
implications.

2. The definition of the model

We consider a system consisting of N agents interacting at discrete time intervals (at each
round of the game). The interaction takes place through the action, concerning p objects or
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resources, which each agent undertakes. The actions are determined by one of z strategies
which are chosen randomly and independently for each of the agents at the beginning of
the game. In the course of the game the agents can change their actions only by changing
their strategies, i.e. choosing one of the z predefined ones (for each agent). We denote by
a

µ

is the action taken by agent i = 1, . . . , N concerning resource µ = 1, . . . , p when he/she
adopts strategy s = 1, . . . , z. We consider here the case of binary actions a

µ

is = ±1. The
specific values of a

µ

is—the realization of quenched disorder—are drawn at random from some
distribution. Thus a strategy is a binary vector, which can be interpreted for instance as a list
of actions to be undertaken concerning each of the objects.

Agent i chooses the strategy used in the next round of the game on the basis of the
performances of his/her strategies in the previous runs, which are measured by score functions
uis(t). The agents choose the strategy

si(t) = arg max
s

uis(t) (1)

with the highest score and undertake the profile of actions a
µ

isi (t)
µ = 1, . . . , p (i = 1,

. . . , N ). The agents know about the actions of others only through the cumulative actions:

Aµ(t) =
N∑

i=1

a
µ

isi (t)
µ = 1, . . . , p (2)

which are used to update the score functions:

uis(t + 1) = uis(t) +
ε

p

p∑
µ=1

a
µ

is

[
Aµ(t) − η

(
a

µ

isi (t)
− a

µ

is

)]
(3)

where ε > 0 and η ∈ [0, 1] are constants.
Let us first discuss this dynamics for η = 0. Note that Aµ(t) has the same sign as the

action undertaken by the majority concerning object µ. Then equation (3) implies that those
strategies prescribing an action aligned with the majority are rewarded. In other words, by
this learning dynamics, agents strive to find that strategy which puts them in the majority.
Because of the averaging over µ this rule is called a batch version of the majority game. The
on-line version, where a value µ(t) is randomly drawn at each time and agents update the
scores depending on Aµ(t)(t), will be discussed in the concluding section.

With parameter 0 < η < 1 one can change the degree to which the agents take into account
the influence of their own actions on the cumulative quantity Aµ(t) (see [11]). In particular,
the case η = 1 describes agents who are learning to respond optimally to the behaviour of
the others. Indeed for η = 1 equation (3) computes the correct value of Aµ(t) if agent i had
actually played strategy s. This is what game theory assumes a rational player should do, so
the stationary states of the game for η = 1 are Nash equilibria (i.e. those states where each
agent takes the optimal strategy, given the strategy of others [12]). As in the minority game
[4], in spite of the fact that Aµ(t) ∼ √

N is much larger than a
µ

is ∼ O(1), the η term is not
negligible.

The new, updated payoff functions are used to determine the action in the next time step
through equation (1).

Note that Aµ(t) is the difference between the size of the two groups of agents who
undertake opposite actions a

µ

isi
= +1 or −1. If agents do not interact and the actions +1

and −1 are equivalent, it is obvious that Aµ(t) ∼ √
N . We shall pay special attention, in

what follows, to the possibility that, when turning on the interaction, a macroscopic difference
Aµ(t) ∝ N may emerge, for some value of µ.
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2.1. z = 2 case

In this paper we will focus on the case where z = 2. We allow for a correlation of the two
strategies of the same agent by introducing a parameter

g = P
(
a

µ

i+ = a
µ

i−
)

(4)

with P
(
a

µ

i+ = 1
) = P

(
a

µ

i+ = −1
) = 1

2 .
Instead of keeping track of the two payoff functions it is enough to consider their

difference:

yi = ui+ − ui−
2

. (5)

3. Stationary states

Taking the average over the stationary state distribution, which we denote by 〈· · ·〉, of the
dynamical equation of yi(t), we get

vi ≡ 〈yi(t + 1) − yi(t)〉
ε

= ξi� +
N∑

j=1

ξiξjmj − ηξ 2
i mi (6)

where we used a standard notation

mi = 〈signyi〉 ξ
µ

i = a
µ

i+ − a
µ

i−
2

�µ =
N∑

j=1

a
µ

j+ + a
µ

j−
2

x = 1

p

p∑
µ=1

xµ.

We expect that all the agents in the long time limit are frozen, i.e. they do not change
their strategies. Indeed, exactly as in the case of the minority game, it is easy to check that the
stationary states correspond to the minima of

Hη = −1

2
A2 +

η

2

∑
i

ξ 2
i m2

i

= −1

2

∑
i,j

ξiξjmimj −
∑

i

�ξimi − 1

2
(�µ)2 +

η

2

∑
i

ξ 2
i m2

i . (7)

The argument starts by observing that if vi �= 0, then yi → ±∞, depending on the sign of
vi , and hence mi = sign vi . Only if vi = 0 can we have mi �= ±1. Then one observes that
vi = − ∂Hη

∂mi
so these conditions are equivalent to the conditions for the minima of Hη. But

it is evident, from the form of Hη, that its minima lie only at the corners of the hypercube
[−1, 1]N .

The conclusion that stationary states correspond to the minima of Hη is straightforward
from the dynamical equations in the limit ε → 0. Then one can introduce a rescaled continuous
time τ = εt and verify that Hη is a Lyapunov function of the continuous time dynamics.

Figure 1 shows that numerical simulations fully confirm the above picture. Note in
particular that while the initial stages of the dynamics are somewhat noisy, fluctuations are
negligible in the long time limit.

Strictly speaking there is no stationary state in terms of the variables yi as they diverge to
±∞. The term stationary state refers to the variables mi which take well-defined values in
the limit t → ∞.

We remark that the H0 is simply related to the predictability H = −2H0 introduced in
the minority game [6]. Since mi = ±1 for all i, H is also equal to the volatility σ 2 = A2.
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Figure 1. Simulations of the model for α = 0.2, N = 1000, η = 0 and random initial conditions.

Hence agents in the majority game strive to maximize H whereas agents in the minority game
minimize it.

Hη is very similar to the Hamiltonian of the Hopfield model known from the theory of
neural networks [13]. The only differences are: the scaling with 1/p instead of 1/N , the
presence of the random field and the fact that the patterns ξ

µ

i can take three values 0,±1
instead of only two ±1. By analogy with physics we shall call Hη energy. We note that for
g = 0 one obtains the ‘pure’ Hopfield model (with different rescaling), whereas for g = 1/2
one has a majority game with independently chosen strategies.

The stationary state values of mi satisfy the equations:

mi = sgn


ξi� +

N∑
j=1

ξiξjmj − ηξ 2
i mi


 . (8)

It is clear that any configuration C = {mi} which is a solution of these equations for some
value of η ∈ [0, 1] will also be a solution for all η′ < η. Hence the set Sη of stationary states
satisfies the property Sη ⊂ Sη′ for η′ < η and, in particular, S1 ⊂ Sη for all η < 1. It is also
easy to see that the state with minimal value of Hη lies in S1 for all η ∈ [0, 1]. This shows that
Nash equilibria are stationary states of the majority game for all values of η, but the converse
is not true.

In the remaining part of this paper we will try to determine the nature of the stationary
states of the majority game and calculate the number of such states. In the next section we will
employ the replica method to analyse the thermodynamics (for T = 0) of the model defined
by the Hamiltonian (7). Then, using the stability relation (8) we will calculate the number of
stationary states in the annealed approximation as a function of various parameters.

4. Replica approach to thermodynamics

In the light of the previous considerations, it is clear that stationary states of the majority
game for all values of η ∈ [0, 1] are determined by the minima of Hη lying at the corners of
the hypercube [−1, 1]N . Note that when we restrict ourselves to mi = ±1 the η term in Hη

becomes an irrelevant constant. This is why none of the results in this section depend on η.
As usual, we build a partition function corresponding to the Hamiltonian (7), introducing

an inverse temperature β. Using the replica method [14], we perform the average over the
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Figure 2. The phase diagram computed by the replica symmetric approach described in the text
(full line). The points are numerical estimates of the phase boundary αc(g) obtained from the
crossing of the maximal overlap for different system sizes, as shown in the inset (g = 0.15,

η = 1, p = 64, 128 and 256, maximal overlap initial conditions).

quenched disorder and obtain the free energy density function. Within the replica symmetric
ansatz, the latter depends on the Edward Anderson order parameter q, the overlap b with
pattern ξ 1 and the residual overlap r. In the limit β → ∞ we find q → 1 with

χ = lim
β→∞

β(1 − q)

finite and the free energy takes the form

f = 1

2

b2

α
+ αχr − α

2

1

α − (1 − g)χ
− 2

√
αr

π
[g + (1 − g) exp(−b2/(4α3r))]

− (1 − g)b

α
erf

(
b

2α3/2
√

r

)
. (9)

The parameters b, r and χ should take the values optimizing the free energy. We remark
that the overlap b corresponds to the equilibrium value of A1/N . The capacity α = p/N , and
g defined by (4) are the parameters.

The analysis of the solutions to the saddle point equations

∂f

∂b
= 0

∂f

∂r
= 0

∂f

∂χ
= 0 (10)

allows us to draw the phase diagram (see figure 2).
One can distinguish two phases: a spin glass phase (b = 0) and a retrieval phase, where

besides a spin glass solution there also exists a retrieval solution (b �= 0).
We also calculated a series of T–α phase diagrams and we found small reentrance of the

spin glass phase at low T, just as in the Hopfield model. It implies that as in the Hopfield
model there is replica symmetry breaking for low T. However, the effect on the phase diagram
is very small and becomes even smaller as g increases.

A simple calculation shows that for the spin glass solution

A2

N
= −2H0

N

∼=
(

1 +

√
2(1 − g)

πα

)2
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Figure 3. Comparison of energy profiles obtained for g = 0.5 and η = 0.

within the replica symmetric ansatz (see figure 3). The solution with b �= 0, which using
the neural network nomenclature, we call retrieval, is conveniently described in terms of the
parameter x = b/(2α

√
αr) [15], which satisfies the equation

x = (1 − g)erf(x)√
2α(1 − g) + 2π−1/2(1 − g)[g + (1 − g) exp(−x2)]

. (11)

For g � 2/3, two non-zero solutions for x(α) exist up to a critical value αc(g), but only
one of them represents a thermodynamically stable state. Of course for g → 0 we find that
the spin glass and retrieval solutions of (10) converge to the solutions found for the Hopfield
model [15]. The phase separation line αc(g) in figure 2 smoothly approaches the α = 0 axis
αc  75

2π

(
2
3 − g

)4
when g → 2/3.

In the retrieval phase the dynamics can, depending on the initial conditions, end up in
one of the two qualitatively different sorts of attractors. In the majority game language the
retrieval corresponds to the macroscopic value of Aµ ∼ O(N) for some µ (say 1), whereas
Aµ ∼ √

N for the remaining values of µ = 2, . . . , p. In the spin glass phase, Aµ ∼ √
N for

all µ.
To confirm these analytical results we have performed extensive numerical simulations

using the dynamical definition of the model (1, 3). This is important because the above
calculation is based on the Boltzmann weight and it focuses on the lowest energy minima.
There is, however, no guarantee that the dynamics of the majority game selects the minima
with the lowest energy.

Direct iteration of the dynamics is slow because in the late stages the time interval between
individual spin flips si → −si becomes very large. A much more efficient algorithm is possible
in the continuum dynamics for ε → 0 because then one can integrate easily the dynamics
between two consecutive spin flips. Clearly when t � 1 the continuum time dynamics
coincides with the discrete time batch dynamics (ε = 1). Indeed no noticeable difference
between simulations with ε = 1 and ε → 0 was found in the typical properties of stationary
states.

The comparison of the energies obtained using different methods for a few values of α in
the spin glass phase is presented in figure 3.

The estimate of the phase separation line coming from the simulations is plotted in
figure 2. Each point was obtained from the crossing of the curves A1/N versus α for different
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Figure 4. Overlap A1/N in the stationary state as a function of initial overlap at t = 0 in the
retrieval phase (α = 0.05 and g = 0.1) for η = 0 (� and �) and 1 (◦ and �). Two system sizes
(p = 64 and 128) are shown in order to appreciate finite size effects. Inset: Overlap as a function
of α for η = 0 (◦, ∗ and ♦) and η = 1 (+ and ×) for maximal initial overlap. The stable (solid
line) and unstable (dashed) solutions of saddle point equations are also shown.
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Figure 5. Same as figure 4 but in the spin glass phase (α = 1 and g = 0.1).

system sizes, as shown in the inset. There is a good agreement with the analytical results.
The static results are η independent, but simulations clearly show that this parameter plays an
important role in the dynamics.

Figure 4 shows that retrieval states are indeed attractors in the retrieval phase. Even when
starting from initial conditions which have only a partial overlap with pattern µ = 1, the
dynamics converges to the retrieval state both for η = 0 and 1. Actually, retrieval is enhanced
when η = 0.

The inset of figure 4 shows how the overlap A1/N depends on α, in simulations with
maximal initial overlap A1(t = 0)/N . While for large α the overlap essentially vanishes (in
the limit N → ∞) if η = 1, A1/N attains a relatively large value for η = 0. The error bars
for η = 0 indicate that the distribution of the overlap is very broad for intermediate values of
α; the overlap in a particular run can converge to any value in the interval [0, 1 − g].

Figure 5 shows that a very different scenario takes place in the spin glass phase. While
for η = 1 even starting from maximal overlap the dynamics converges to a spin glass state
(〈A1〉/N → 0 as 1/

√
N when N → ∞), for η = 0 the stationary state preserves the initial



Statistical mechanics of the majority game 11733

overlap. In order to understand this behaviour it is useful to compute the number of stationary
states of the majority game as a function of the parameters α, g and η.

5. Number of stationary states

In order to learn more about the phase space of the majority game we calculate the number of
stationary states as a function of various parameters. The stability relation (8) can be written
in the form

miξiA − ηξ 2
i > 0 mi = ±1 (12)

The average number of stationary states can be defined as

� =
〈〈 ∑

{mi=±1}

N∏
i=1


(
miξiA − ηξ 2

i

)〉〉
(13)

where 〈〈· · ·〉〉 stands for the average over random patterns ξ
µ

i . This quantity is not self-
averaging and diverges exponentially with N. Therefore, we will calculate the annealed
entropy:

sa = 1

N
Sa = 1

N
ln �. (14)

Since the average over the disorder is inside the logarithm (annealed approximation) the
calculations are straightforward (see [16, 17]) and lead to the following result:

sa = max
c,ĉ,�,�̂,γ,γ̂

{sa(c, ĉ, �, �̂, γ, γ̂ )} (15)

sa(c, ĉ, �, �̂, γ, γ̂ ) = cĉ − αγ γ̂ + α2��̂ − α

2
ln[2� + (γ − 1)2]

+ ln

[
cosh(ĉ) − 1

2
(1 − g)

[
e−ĉerf

(
2(1 − g)(η − γ̂ ) − 2

α
c

2
√

2(1 − g)�̂

)

+ eĉerf

(
2(1 − g)(η − γ̂ ) + 2

α
c

2
√

2(1 − g)�̂

)]
− g cosh(ĉ)erf

(
2(1 − g)(η − γ̂ )

2
√

2(1 − g)�̂

)]
.

(16)

In figure 6 the annealed entropy is plotted as a function of g, η and α. For large values of
α the number of stationary states increases dramatically when η decreases from 1 to 0. As α

grows sa saturates at ln(2) for η �= 1. This can be understood observing that when

|ξiA−i | ≡
∣∣∣∣∣∣�ξi +

∑
j �=i

ξiξjmj

∣∣∣∣∣∣ < (1 − η)ξ 2
i  (1 − η)(1 − g)

equation (8) is satisfied for both mi = ±1. In words, when the effective field A−i on spin i due
to the other spins mj is weak enough (i.e., its absolute value is smaller than (1 − g)(1 − η)),
mi can take both values. If it happens for every i all the states of the system (expressed in
terms of configuration {mi}) are stationary and thus sa = ln(2). For large α the effective fields
become small in absolute value. Indeed ξiA−i is well approximated by a Gaussian variable
with zero mean and variance 2|H0|/p ∼ 1/α. As a result sa → ln(2) as α → ∞. Only when
η = 1 or g = 1 does sa saturate to values smaller than ln(2) (see figure 7).
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Figure 6. α dependence of entropy sa for various values of the parameters g and η.
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Figure 7. α dependence of entropy sa for η = 1 and various values of g. Inset: Maximal entropy
smax
a as a function of g for η = 1 and α → ∞.

The strong η dependence of sa displayed in the first plot in figure 6 explains the difference
in the dynamical behaviour of the model in the spin glass phase with η = 0 and η = 1
(figure 5). Since for η = 0 the stationary states are very dense in the phase space, the system
does not move far from the initial state before it is trapped at one of the fixed points of the
dynamics. Thus the initial overlap changes very little. In the case η = 1 the number of
stationary states is much smaller and the system goes far away from the initial state (the initial
non-zero overlap vanishes for N → ∞). It is important to remark that the states with a
non-zero overlap which are stable for η = 0 in the spin glass phase are not attractors in the
usual sense because their basin of attraction vanishes in the thermodynamic limit.

It is easy to find sa as a function of energy E:

sa(E) = max
c,ĉ,�,�̂,γ,γ̂ ,u

{
sa(c, ĉ, �, �̂, γ, γ̂ ) + uE +

1

2

u

α
c2

}
(17)
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Figure 9. Entropy sa(b) as a function of the overlap for η = 0 and various values of g.

or overlap b

sa(b) = max
c,ĉ,�,�̂,γ,γ̂ ,u

{
sa(c, ĉ, �, �̂, γ, γ̂ ) + ub − uc

}
. (18)

The results are presented in figures 8 and 9.
The energy dependence of sa enables us to determine the average energy of the infinite

system (see the curve in figure 3) and explains the size of the error bars of the simulation
results. The larger error bars are due to the wider distribution of the energy (smaller α).

The b dependence of sa deep in the retrieval phase has a different character than in the
spin glass phase (see figure 9). The gap (region where sa(b) < 0) in the distribution in figure 9
disappears close to the phase boundary. We suppose that in reality the gap vanishes precisely
at this boundary (compare [17]). Unfortunately, due to the inadequacy of the annealed
approximation we are not in a position to draw more quantitative conclusions.

This inadequacy of the annealed approximation used to calculate the entropy sa is much
more evident than in the case of the minority game with η = 1 [16]. One can see it by
comparing the maximal allowed value of the overlap bmax = 1 − g with the maximal value of
b for which sa(b) > 0 (figure 9). For all g > 0 the function sa(b) suggests the existence of
stationary states with b > bmax. Also the discrepancy between the energy profiles (figure 3)
should be attributed to the use of the annealed approximation, which indeed underestimates
the true energy.
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We tried to calculate the quenched entropy using the replica method (see [18]), but up to
now we were not able to solve the arising numerical problems.

6. Conclusions and discussion

We have shown that the stationary states of the majority game correspond to the local minima of
a Hopfield-type Hamiltonian and are attained when all agents ‘freeze’, i.e. always use the same
strategy. Stationary states are not necessarily Nash equilibria except when agents correctly
account for their impact on the aggregate (η = 1). Depending on the parameters, the system
can be in one of two phases: a retrieval phase characterized by attractors with a macroscopic
overlap A1 ∼ O(N) and a spin glass phase with no retrieval. A macroscopic overlap can
also be sustained, in the spin glass phase, for η small. We attribute this phenomenon to the
self-reinforcing term (1 − η)ξ 2

i si in the dynamics which causes a dramatic increase in the
number of stationary states as η decreases. This picture extends to the on-line version of the
game. Indeed the equations for the stationary states are the same and, since agents freeze in
the long run, fluctuations play no role (in contrast to the case of the minority game [6]).

These results allow us to draw some suggestions on the behaviour of systems of interacting
agents driven by conformity or by increasing returns. The occurrence of a macroscopic
overlap A1 ∼ O(N) may correspond to crowd effects such as fashions and trends, when
a large fraction of agents behave similarly in some respect, or to economic concentration,
when, for example, one particular place is arbitrarily selected for large scale investments. The
development of these crowd effects requires: (i) that the number of agents is large compared to
the number of resources (α small), (ii) a sufficient differentiation between strategies of agents
(g < 2/3) and (iii) a large enough initial bias (i.e., an initial macroscopic overlap) towards
a particular resource, fashion or place. Finally, crowd effects can be sustained under more
general conditions (i.e., in the spin glass phase) if agents do not behave strategically, i.e. if
they neglect their impact on the aggregate (η small).

Besides the relevance of the model as a system of heterogeneous interacting agents, it is
also interesting as an example of non-Glauber dynamics in the energy landscape of Hopfield-
type Hamiltonians. It is remarkable that, in spite of the fact that the dynamics of yi does not
satisfy detailed balance, the statistical mechanics picture remains quite accurate.
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